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1 Logarithms

logyr =c <= x=10°

The common logarithm 1s

log () = logy ()

The Naperian or natural logarithm 1s

In(z)=log, (x), e=2T183...

Also,

1.1 Properties

antilog (log (x)) = x

(
log (x¢) = clog (x)
log (xy) = log (x) + log ()

log (g) = log (x) — log (y)
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1.2 Examples

Example 1 Find log;, (0.00001) .

Solution: We have

logy,(0.00001) = ¢
<~ 10°=0.00001 = 10~
= c=—)

Example 2 Find the common logarithm of 1000%.

Solution: We have
logq (1000%) = logyo ( (10%)")

— 10g10 <1012>
— 12 10g10 (10)
= 12

Example 3 Find the Naperian logarithm of e! ™ Y.

Solution: We have

In(e'**7Y) = (142 —y)In(e)
= 14z —y
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2 Complex Numbers

a+ib, i=-1

2.1 Multiplication/Division/Conjugation

(a +1b) (¢ +id) = (ac — bd) + i (ad + bc)

a+ib  (a+ib)(c—id) _ac+bd+ibc—ad
c+id (c+id)(c—id) c+d> 2+ d?

z| =a*+0V°, ZzZ=a—1b

2.2 Polar Form

z =1 (cosf +isinb)

b z=a+ib
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Conversions
x=rcosf, y=rsinf
r=+/22+1y?, 0=tan"! (g)
x

Euler’s Formula

e — cosf +isinf

Multiplication/Division/Powers/Roots in Polar

2129 = 1173 |cos (01 + 02) + isin (61 + 65)]

AN [cos (01 — 6) +isin (6, — 02)]

Z9 T2

2" = 1" [cos (nd) + isin (nd)]

0 0
/z=r [COS (g+k@) + 7 sin (Qij@)]

n n n n

oE = oF [COS (9+2k7r) ©isin (6’+2k7r)]

n
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2.3 Examples

Example 4 Find the polar form of z = 6 + Ta.

Solution: We have

r = V6247 =9.2195
0 = arctan (7/6) = 0.86217 rad = 49.40°
= 2z = 9.2195 (cos (49.40°) + i sin (49.40°))

Example 5 Find /1 + i

Solution: We have

3 4+ 2 . 4+ 2
31+i:\/§[cos<7r/ —?t kW)Jrzsm(ﬁ/ + kﬁ)]

=0 9o (22 s (20

— 1.084215081 + 0.29051455543

vl 442 . 442
k=1, /2 cos(ﬂ/ ; 7T>+zsm<7r/ ; W)]

= —0.7937005260 + 0.7937005260i
3 4447\ [(7w)4+4
k=1 vI2+1° [cos (W/ ; W) + ¢ sin (W/ ;_ W)]
= —0.2905145554 — 1.084215081%
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3 Matrices

3.1 Operations
Addition: A + B = [a@'j] + [b@j] = [aij -+ bij]

Example 6
L=30] [ 04 51 [115
2 =47 —14—2__105
Scalar Multiplication: cA = ¢ [azj] = :C&zj]
Example 7
1 0] [ 2 0]
21 —3 4| =|—-6 8
| 5 —1 10 =2

Matrix Multiplication: If A,, s, Bixn, then (AB)

mXxn

A= [CLmn] , B= [brq] 3 AB = [Cij]

Cij = Q41 blj + Q9 sz + -+ Qg bk:j

Example 8
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Example 9

3.3 Transpose

=2

D

1 —1]

—15 -3 3

20

4 —4

Amxn — [mAmxn

So AB # BA

The transpose of A = [a;;] , is AT = [a;].
Example 10
4T
(1 2]
1 35 T
34| = [ ] : [a b c d] =
56 2406

Q. O
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3.4 Introduction to Determinants

ail a2

= (11022 — Q124921
a21 422

A — [an alQ] :>|A|:

a21 422

Example 11
1 2
‘34‘—1-4—2-3——2
11 Q12 413
o a22 A23 21 A23 a21 A22
do1 f2z G2s ) = a3z 33 ; a3; as33 a3z; a32
a3; asz2 Aass
Example 12
12 0
0 —2 1 =2 10
10 -2 :1\ |_2| M '
092 —1 2 —1 0 —1 0 2
::1-4—2-(—1)—#0'2
=06
1 1 0
0 2 2 2 2 0
20 2 :1' H '+o‘ \
0 —9 _1 —2 —1 0 —1 0 —2

= 0
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The Sarrus Scheme

a11 A22033 + A12 A23A31 + @13 4210432

—a13022a31 — A11 23432 — A12021433

Warning: This works only for 3 X 3 determinants!

3.5 Cofactors

The (7, j) minor
M;;
of a square matrix A is the determinant obtained by deleting the
1th row and the jth column.
The signed minor (—1)"*/ M;; is called the (4, j) cofactor, of
A and is denoted by C;.

Cij = (1) M
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11

The signs (—1)"*/ follow a checkerboard pattern of +s

The matrix of cofactors is [C; /]

__1___1_...
..
+ — + -

~-12 2]
Example 13 The cofactors of A = 4 3 =2 | are
-5 0 3]
3 —2
Mll — 0 3 | =9 011 = (—1)1+1M11 =
4 =2 142
My = B 2 Cp=(-1)"My=-1-2=-2
43 143
M13 = 50 =15 013 = (—1) M13 =15
22 2+1
My = 03 =0 Cor=(—=1)""My;=—1-6=—6
—1 2 242
Mp=| =7 Cog = (—1)""" My =
=12 243
M23 = 50 = 10 023 = (—1) M23 =—1-10=-10
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2 2

M31 — 3 _9 ' = —10 031 = (—1)3+1M31 = —10
—1 2

M32 — 4 —9 ' = —0 032 = (—1>3+2M32 = (—1)(—6) =0
—1 2

M33 — 49 | = —11 033 — (—1)3+3M33 = —11

Example 14 The matrix of cofactors of A in the previous example
IS

Cy O O3 ] 9 —2 15
021 022 023 — —6 7 —10
i 031 032 033 | i —10 6 —11 |

3.6 Cofactor Expansion of Determinant

(1) Cofactor Expansion about the ith row The determinant of
A can be expanded about the 7th row in terms of the cofactors
as follows.

det A = a;1C;1 + aioCio + -+ - + a;,Ch,

(2) Cofactor Expansion about the jth column The determinant
of A can be expanded about the jth column in terms of the
cofactors as follows.

det A = a1;C1; + ag;Coj + - - - + a,;C
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Example 15
det A = a11C11 + a19C9 + a13C3
= (—1)9 + 2(—2) +2-15 =17
det A = a91C91 + a99C5 + a93C53
CA(—6) + 3T+ (—-2)(—10) = 17

det A = a31C31 + azoCs0 + az3Css
— (=5)(=10) £ 0- 6+ 3(—11) = 17

det A = a11C11 + a91C91 + a31C3q

— (—1)9 + 4(=6) + (=5)(=10) = 17
det A = a19C19 + a990C5 + a39C39
:2(—2)—|—3'7—|—0'6: 17

det A = a13C13 + a93C593 + a33Cs3
—2.-15+ (—2)(—10) + 3(—11) = 17

3.7 Properties of Determinants

a; az as a; b1 ¢
(1) | b1 b2 b3 | = a2 by ¢
c1 ¢y C3 az by c3
ap a2 ag a; az as
(2) | kby kby kbs | =k| b by by
ct G C3 C1 C2 C3

13
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)

(4)

)

(6)

(7)

(8)

aip ao as bl bQ bg

bl bQ bg = — | ay as as

C1 C2 C3 C1 C2 C3
ay a2 as

kai + by kas + by kas+ bs | =
C1 &) C3

al; as as

0 0 0]=0

C1 C2 C3

ap az ag

alp as ag | = 0

C1 C2 C3

ap a2 das

kai kas kas | =0

i C2 C3
aj a2 as

kai + lcy kas + lcy kas + les
C1 C2 C3

(9) Cauchy’s Theorem
det (AB) = det (A) det (B)

(10)For A, «»,

ap az as
by by b3

C1 C C3

det (kA) = k" det (A)
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3.8 The Adjoint

The transpose |C'j;] of the cofactor matrix [Cj;] of a square matrix
A is the adjoint of A and it is denoted by Adj(A).

I Cll 021 e Cnl
Adj (A) _ Ctl? CY:22 ’ C:nQ
i Cln CZn e Cnn _

Example 16 Find the adjoint of A, where

12 2]
A= 43 —2
50 3

Solution: In Example 14 we found the cofactors of A to be

Oy Cpy O3] 9 —2 157
021 022 023 — —6 7 —10
_031 032 033_ _—10 0 —11_
Hence,
_011 021 031_ i 9 —0 —10_
Adj(A)=[Cij]" = |Ca Cn Cp | = | =2 7 6
_013 023 033_ i 15 —10 —11_
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Basic Property
AAdj(A) =det(A)I, = Adj(A) A

3.9 The Inverse

An n X n matrix A is invertible, if there exists a matrix A~! such
that

AAT =T and A7'A=1
In such case A~! is called an inverse of A. If is a fact that if A~
exists, it 1s unique.
If no inverse A~! exists for A, then we say that A is
noninvertible. Another name for invertible is nonsingular and
another name for noninvertible is singular.

A= [ CCL Z] is invertible if and only if det (A) = ad — bc #

0, in which case

e

BASIC FACTS
(1) A is invertible if and only if det (A) # 0
(2) Let A be an invertible matrix. Then

1
1
A= det(A)

Adj(A) (D)
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Example 17 Find A, where A is as in Example 16.

12 2]
A= 43 —2
=50 3
Solution: We have
—-12 2
det(A)=| 43 —=2|=17
—50 3
Hence, by Example 14, and (1)
1
Al = Adj(A
Jorra) )
[ 9 —6-10
| 15 —10 —11 |
9 _6 _ 107
17 17 17
| -2 T 6
17 17 17
15 10 _ 11
| 17 T 17 1T

0.52941 —0.35294 —0.58824 |
= | —=0.11765 0.41176  0.35294
0.88235 —0.58824 —0.647006 |
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Verification with small numerical error.

12 21 0.52941 —0.35294 —0.58824 |
AA-L = 43 —2 —0.11765 0.41176  0.35294
| —50 3| | 0.88235 —0.58824 —0.64706

[ 0.99999 —0.00002 0
= | —0.00001 1.0 —0.00002

I 0 —0.00002 1.0
4 Linear Systems
3r+2y+2z=239 T1+x2 =09 Y1+ Y2 +ys = —2
20+ 3y + 2z =34 r1 — 229 =6 Y — 2y2 + Tys = 6
T+ 2y + 3z =26 —311 + a2 =1

4.1 Square Linear Systems

—x + 2y + 22 = —20
dr 4+ 3y — 22 = —7
—ox + 3z = —24
or in matrix form Ax = b
12 2] = - —20 |
4 3 —2 y| =1 =7
50 3] = —24
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One way to solve 1s by using the inverse 1f it exists

Ax = b
= A 'Ax=A"b
= [x=A"1b
= x=A"'b

Example 18 Solve the system
—x + 2y + 22 = —20
dor + 3y — 22 = —7
—ox + 3z = —24

Solution: From Example 17, we have
-9 6 107 r . _

17 ~ 17 17 —20
x=A"b=|-2 £ || -T|=
15 10 _ 11 —24
17 1 rd b - -
So
r=06 y=-9 2z=2
Verification
[ —12 2] [ 6] [-20]
4 3 —2 -9 1= =7

19
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4.1 Cramer’s Rule

Let Ax = b be a square system, with

al ... Aip I bl
A=\ :+ . + |, x=1|: |, b=

anl .. Gpop Tn b,

Let A; denote the matrix obtained from A by replacing the sth
column with b.

aryp -+ A1i-1 by aii+1 - Qin

A; =

Apl - Qpi—1 bn Api+1 " Qpp

Cramer’s Rule gives an explicit formula for the solution of a
consistent square system.

Theorem 1 (Cramer’s Rule) If'det(A) # 0, then the system

Ax=Db
has a unique solution X = (x1, ..., x,) given by
 det(Ay) ~ det(Ay) ~ det(A,)

1 oy Ip

T det(A) T det(A) ~ det(A)
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Example 19 Use Cramer’s Rule to solve the system.

T1+ T — 23 =2
T1— To+ X3 =23
—x1+ 10+ 13 =4

21

Solution: We compute the determinant of the coefficient matrix
A and the determinants of

2 1 —1] 12
Ai=13-1 1|, Ay=] 13

41 1] —14
to get det(A) = —4, det(4;) = —
det(As3) = —14. Hence,

det(A;) 5 det(As)

T = —, T9 =
det(A) 2 det(A)

—1]
1
1_

7143:

10, det(A2> = —12,

Example 20 Use Cramer’s Rule to find the solution to the general
linear system, if a11a99 — a12a21 7 0.

Solution: Since |A| = ajja — aipa9 # 0, we have

a1121 + a9y = by
911 + A92xy = by

. M_1| - a22b1 — a12b2

L |A‘ a 11022 — A12G21 7

. @ o a11bs — ag1by

2 |A\ B a11a22 — Q12021
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5 Vectors

Vector addition a + b

Example 21
1] [ 9
21+ =7
4 | —13
5 u+v
By + V|-
v i
¥3 i R*
o
0 1';1 1;1 14:1:+*u'1 1

Fig. : The parallelogram law for vector addition.

Scalar multiplication ca

Example 22

40
—15
39

22
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R2 2u cu A3 R*?
1.5u

-0.5u

Fig. : Scalar products.

The standard basis vectors in R? and R? are denoted by i, ]

and 1, j, k.
SRR
01’ 1
and
(1] [0 | [0 |
i=e = |0], j=e=1|1], k=e3= |0
0 | 0 |1
X, R2 X3 R’
1Te2j

e =1

Fig.: Standard basis vectors in R? and in R°.
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Every 3-vector can be written in terms of i, j, k.

a 1 0 0
b|=a|0|+b|1]|4+c|0]| =ai+bj+ck
| C _O_ _O_ _1_

Example 23
a1 T 4
211 -1 =(=3)4+2(-1)+(1)(5) = -9
1 D

The norm, or length, or magnitude of an n-vector u 1s the
positive square root

1
|ul| =vu-u= (u%+---+ui)2
The (Euclidean) distance between two n-vectors u and v is
lu — v

A n-vector 18 a unit vector, if 1ts norm is 1.
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Example 24 Let

_ - 1
1 2
1
2 - =
V = _3 , u= i
2
1 1
L - i 2_

(a) Find the length of v.
(b) Find the distance between v and u.

(¢) Is u a unit vector?

Solution: We have

@ |v] = (12+22+(—3)2+12) — /15
®) [[v—ul=|[(53-53)|=v21
© [l =[G -33 -3

Basic Property

u-v = |ul| [|v][cos

Example 25 Orthogonal vectors.

3] [-2] i
2| - 1| =0=cos0=0=60=—
1| | -8 :

25

(2)

90°
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5.1 Orthogonal Projections

Let u and v be given nonzero vectors. We want to write u as
u = Upr + U

where uy, 1s a scalar multiple of v and u, 1s orthogonal to u,
(Fig. 4). This is always possible and such decomposition is
unique.

» + > v
v u

uPr pr

Fig. 4: The orthogonal projection of u on v.

We have
u-v ..
u,, = —— Vv orthogonal projection of uonv  (3)
V-V
and
u-v
u.=u— —— v vector component of u orthogonal to v
V-V

(4)
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Example 26 Letu = (1,1,1) and v = (2,2,0). Find the orthog-
onal projection Uy, of u on v and the vector component u. of u
orthogonal to v.

Solution: We have
u-v (1,1,1) - (2,2,0)

=y = 2,2.0
Y=oy Y 22,0 2.2,0) 020

(2,2,0) = (1,1,0)

OO | W~

and
u.=u—u,=(1,1,1)—(1,1,0) = (0,0, 1)

The answer 1s geometrically obvious as we see in Fig. Ex. 26.

(0,00

Fig. Ex. 26: Projecting (1,1,1) on (2,2,0) .
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5.2 Cross Vector Product

The cross product u x v is the vector with components

Uy U1
uxv = | us | X | vy | = (ugv3—usvs, uzv1—uiv3, UVs—UsV1)
u3 U3

This may also be expressed in determinant notation

L)k Ug U Uy U (!
UXvVv=|U Uy Ug| = 2 73 — LS 121{
Vg U3 U1 Us V1 Uy
U1 V2 Vs
Example 27 Find the cross product
SR SRR
uxv=|-—-1| x| =2
- 3_ __1_
Solution:
i jJ k
-1 3 2 3 2 —1
uxv=|2-1 3 :| 1—‘ |J | lk
| o —2 —1 I —1 I =2
= 71+5)—3k
SLE
= D
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Note that
ixj=k jxi=-k
jxk=i k xj=—i
k xi=] ixk=—j

As we move clockwise the cross product of two vectors gives the
third. As we move counterclockwise the cross product of two
vectors gives the opposite of the third.

O

u-(uxv)=0 and v-(uxv)=0

Note that

So, u X v 1s orthogonal to u and v.

ul (uxv) and v 1 (axv)

If u and v are nonzero vectors then the direction of u X v
1s perpendicular to the plane defined by u and v. Furthermore,
it can be shown that for a right-handed coordinate system the
vectors u, v and u X v form also a right-handed system. This
determines the direction of the cross product. Next, we determine
its length.
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W

T
Sl | ]

Direction of the cross product for a right—handed system.

Basic Property
lux vl = [[u]| |v][sind

Geometrically, this length is the area of the parallelogram
defined by u and v. Hence the area, A, of the parallelogram with
adjacent sides u and v 1s

A=uxv]|

U = W .
lusewll =[lulllv]l sing
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5.3 Applications of the Cross Product to Geometry

Example 28 (Area of Parallelogram) Compute the area of the
parallelogram with adjacent sides PQ) and PR, where P(2,1,0),
Q(1,—2,1) and R(—2,2,4).

Solution:
|PG x PR| = ll(=1,-3,1) x (=4,1,9)|

— [|(=13,0, —13)|| = 13v/2

Example 29 (Area of Triangle) Compute the area of the trian-
gle with vertices the tips of 1, j and k.

Solution: j —1iand k — i are two sides of the triangle. Therefore,
|(j —1) x (k —1i)|| is the area of the parallelogram defined by
these sides. One—half of that is the area of the triangle.

Lo . : 1
5110 — 1) x k=1)] = 5[(=1,1,0) x (=1,0,1)]

1 1
= Z[|(1,1,1)]| = =V/3
5 1L L] 2[
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Theorem 2 (Volume of Parallelepiped) The volume V of the par-
allelepiped with adjacent sides the position vectors U, v and w is
given by

up v wq
V=lu-(vxw)|=2]|u vy wo (5)
u3z vz ws

Example 30 Compute the volume of the parallelepiped with ad-
Jacent sides the position vectors u = (1, —1,2), v = (0,2, 1) and
w = (3,—2,—1).

Solution: We have,

I -1 2
u-(vxw)=0 2 1|=-15
3 =2 —1

Hence, the volume V' of the parallelepiped is |u - (v X w)| =
—15| = 15.
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6 Series

6.1 Operations

Addition
o0 o0 0
>t 3 =Y )
n=1 n=1 n=1

Series Multiplication

220:1 Un Ziil bn = 2730:1 Cn
Cp = Zzlz_ll a;bn—;

Cp = Cl,lbn_l -+ CLan_Q + -+ Cln_lbl

6.2 The Geometric Series

a+ar+ar’+ a4+ =32 '

33
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: : Qa :
A geometric series converges to the number 1 , 1f and
— T
only if |r| < 1.
a
a+ar+ar2+---+ar”+---=1 : r| <1
—r

The geometric series 1s detected by checking in

00
D
n=1

the equality of the ratios

If these relations hold then the series is geometric with

az
a=a, Tr=—
ay
Example 31 Compute the infinite sum.
5 15 N D 375 N
8§ 64 512
Solution: Because
_ 15 75 _ 375 5
~ 8 _ 64 _ _5512_ .. _ _°
15 75
3 —2 & 8

2

The series 1s geometric with r = —3

and a = 3. So it converges
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to

Example 32 Write the following number as a rational number
(quotient of two integers).

1.222222 . ..

Solution:

1.222222 ... = 14+ —+ + T

— 14+ 10 :
10
!
9
6.3 Taylor Series
Fa@) = F@+ LD a0 gy
(n)

n

< ¢(n) (,
:Zf '<)<CIZ—CL)n
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If a = 0 we have Maclaurin Series

/ ! (n)
fx) = f(0)+ f1<,0)1‘+ f2<!0):r;2+-~+ / n!(o)a:”Jr--
— (0 ,
- Zo n! *

Example 33 Find the Maclaurin series for sin (x) .

Solution:
flz) = sin(z) f(0) = 0
f(x) = cos(z) [ (0) = 1
f(x) = —sin(z) [f"(0) = 0
f" (@) = —cos(x) f"(0) = —1
fW(x) = sin(x) fU0) = 0

The coefficients are
0,1, 0, —1,0, 1, 0, —1,0, 1, 0, —1...

So we have
0 —1 0, 1 0

1
sin(z) = 04+ =2+ —2° + —a° + —a* + —2° + —2° - -

1! 2! 3! 4! 5) 6!

n

- (_1> 2n+1
=2 2n+ 1)

n=>0

36
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7 Numerical Methods

7.1 Bisection Method

Finding roots of functions iteratively:

Start with a function f (x) and two points Ly and Ry such
that f (Lg) and f (Ry) have opposite signs.

Forn = 0,1,2,..., perform the following steps until
sufficient accuracy is achieved.

1
(1) Setm = 5 (L, + Ry)

(2) find f (m)

B)If f(L,) f(m) <0,set L,.1 = L, and R,,.1 = m.
Otherwise set L,, .1 = mand R,.1 = R,,.

(4) f (x) has at least one root in the interval (L, 11, R, 11) - The
estimated value of the root is z*

L, 1
L = 5 (LnJrl + Rn+1)
The maximum error 1S
1
5 (Rn+1 — Ln+1)

Example 34 Use two iterations of the Bisection method to find a
root of

flo)=a2°—20—7
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Solution: The first step is to find Ly and Ry such that f (L),
f (Ro) have opposite signs. A table of values of f (x) for random
values of x 1s

z) -2 -1 0 1 2 3
flx)|-11 =6 —7 —8 —3 14
f (z) changes sign between © = 2 and x = 3. Ly = 2 and
Ry = 3.

First iteration, n = 0

1

f(25) = (25)° —2(2.5) — 7= 3.625
Since f (2.5) > 0, a root must exist in (2,2.5) . At this point the

best estimate of the root 1s

z*==(2425) =225

1
)
and maximum error

(2.5 —2) =0.25

DO |

Second iteration, n = 1

1

F(25) = (2.25)° —2(2.25) — 7 = —0.1094



FE USNA/2004 39

Since f (2.25) < 0, a root must exist in (2.25, 2.5) . At this point
the best estimate of the root 1s

1
7' = 2 (25 +2.25) = 2.2.375

and maximum error

1
5 (2.5 - 2.25) = 0.125

7.2 Newton’s Method

Finding roots of functions iteratively:

Start with a function f (x) and a fist guess x( for a root. Then
forn =0,1,2,... perform the iteration

n

Example 35 Use two iterations of Newton's method to find a root
of
flx)=a°—220 -7

Solution: We start with g = 2.
f'(x) = 32* — 2
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First iteration,

40
n=>0

= 2

= (2)°=2(2)—7= -3

= 3(2°=2=10

_ flzg) o =3

— T — f/ (x()) =2 10 = 2.3

Second iteration, n = 1

2.3
(2.3)* — 2(2.3) — 7 = 0.567
3(2.3)% — 2 = 13.87

(1) 0.567
=23 — " =225
(1) 13.87

X1 —
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7.3 Euler’s Method

Euler’s method 1s used to approximate solution to first order
initial value problem (IVP).

dx

P (t,z),  y(to) = w0

The iterations for step size At are
bny1 = Tp + At
Tp+l = Tp + Atf (tnp xn)

Example 36 Approximate x (1.5) with step size At = 0.25 for

the IVP
dx B

i 2¢, x(l)=1
Solution: We have
Tpi1 = Ty + At x [ (t,, 2,)
r1 = xo + At (2x9) = 1+ (0.25) (2(1)) = 1.5

ti=t+At=1+0.25=1.25
and iterate again
ro = x1 + At (2x1) = 1.5+ (0.25) (2(1.5)) = 2.25

So 1n two steps
r(1.5) ~ 2.25



